Hopp til hovedinnholdet
www.matematikk.org

Treningsoppgaver med fasit

Lenke til dette oppgavesettet (kan bokmerkes)

Oppgaver

1

ID: 66315

I en fystikkekse 10 fystikker, av disse er det 3 som er brukte. Vi trekker tilfeldig først ut en fyrstikk å så en til. Hendelsen "første fyrtikk ubrukt" = A og "andre fyrtikk brukt"=B.

 

Hva er sannsynligheten for P(B|A), som betyr sannsynligheten for at den andre fyrtikken er  ikke brukt gitt at den første er brukt?

 

2

ID: 49376

Boks A  inneholder 9 kuler hvor fire av kulene er røde. Boks B inneholder fem kuler og to av disse er røde. Vi trekker én tilfeldig kule fra hver boks.
Hvis bare én av kulene vi trakk var rød, hva er sannsynligheten for at den kom fra boks A?

3

ID: 66329

En skole har 3 klasser. I klasse 1 er det 21 elever hvorav 9 er jenter, i klasse 2 er det 17 elever hvorav 4 er jenter og i klasse 3 er det 28 elever hvorav 16 er jenter. Rektoren ved skolen skal tilfeldig plukke ut en elev.

Vi ser på hendelsene

  • "elev er jente" = J
  • "elev går i klasse 1" = EN 

 

a) Tegn opp et venndiagram for utfallet som er delt i 3 (en del for hver klasse). Så deler du hver av disse 3 delene i 2 og angir antall jenter og antall gutter for hver av klassen.

b) Hva er sannsynligheten for P(J) ?

c) Hva er sannsynligheten for P(EN)?

d) Hva er sannsynligheten for P(J|EN)?

e) Hva er sannsynligheten for P(EN|J)?

 

4

ID: 66316

I en fyrtikkeske ligger det 10 fyrtikker, av disse er 4 ubrukte. Vi trekker tilfeldig ut 2 fyrstikker. Vi betegner hendelsene som

  • "første fyrtikk ubrukt" som a 
  • "første fyrtikk brukt" som b 
  • "andre fyrtikk ubrukt" som A 
  • "andre fyrstikk brukt" som B

a) Hva er sannsynligheten for P(a)?

b) Hva er sannsynligheten for P(b)?

c) Hvorfor gir det ingen entydig mening å snakke om P(A) og P(B)?

d) Hva er sannsynligheten for P(A|a) og P(B|b)?  

5

ID: 49379

En vanlig mynt, en mynt hvor begge sidene viser "Kron" og en mynt hvor begge sidene viser "Mynt" puttes i en pose. En av myntene trekkes tilfeldig og kastes. Mynten lander på Kron.
Hva er sannsynligheten for at vi har trukket ut mynten som viser Kron på begge sider?

 

6

ID: 49459

En urettferdig mynt er slik at sannsynligheten for å få "Mynt" er 0,7. Mynten kastes tre ganger.
Hva er sannsynligheten for å få to Mynt gitt at du har fått minst én Mynt.

7

ID: 49307

En mattelærer ga klassen sin to tester. 25% av elevene i klassen besto begge testene og 42% av elevene besto bare den 1. testen. 
Hvor mange av de som besto den 1. testen besto også den 2. testen? 

8

ID: 49425

I en gruppe på 70 personer er det 42 med blondt hår, 34 som ikke har blå øyne og 23 som har blondt hår men ikke blå øyne. 
Hvis en person med blå øyne trekkes tilfeldig ut fra gruppa, hva er sannsynligheten for at denne personen har blondt hår?

9

ID: 49310

Sannsynligheten for at det er fredag og at en elev er borte fra skolen er 0,03. Siden det er 5 skoledager i en uke, er sannsynligheten for at det er fredag 0,2.
Hva er sannsynligheten for at en elev er borte fra skolen gitt at det er fredag?

10

ID: 49418

Det er 90% sannsylig at Tom vil bestå teoriprøven til førerkortet, mens Tim vil bestå med 85% sannsylighet. Begge reiser samtidig til biltilsynet for å avlegge teoriprøven.
Hva er sannsyligheten for at Tim består når du vet at minst en av dem består?

Fasit

1

ID: 66315
Fasit:

Dersom den første fyrtikken er brent er det 2 brente fyrtikker igjen i eska og 7 ubrukte. Dermed er sannsynligheten for at den andre fyrtikken er brukt gitt at den første er ubrukt

                                                                        29

2

ID: 49376
Fasit:

611

3

ID: 66329
Fasit:

b) Totalt 66 elever (21+17+28) på hele skolen og totalt 29 jenter (9+4+16) på skolen dermed er P(J)=2966

 

c) P(EN)=2166

d) Hendelsen J|EN = "elev er jente gitt at elev går i klasse 1". Det er 9 jenter i klasse 1 og totalt 21 elever i klasse 1 dermed er

   P(J|EN)=921=27

e) Hendelsen EN|J = "elev går i klasse 1 gitt at elev er jente". Det er 21 elever i klasse 1 og totalt 29 jenter på hele skolen. Dermed er

  P(EN|J)=2129

 

 

 

4

ID: 66316
Fasit:

a) 25

 

b) 35

c) Fordi sannsynligheten for disse hendelsene avhenger av om den første fyrtikken som ble trukket er brukt eller ubrukt. Dvs. hendelsene er avhengig og sannsynligheten er betinget.

d) 13 og 59

 

5

ID: 49379
Fasit:

23

6

ID: 49459
Fasit:

0,453

7

ID: 49307
Fasit:

60%

8

ID: 49425
Fasit:

1936

9

ID: 49310
Fasit:

0,15

10

ID: 49418
Fasit:

86,29%