Hopp til hovedinnholdet
www.matematikk.org

Treningsoppgaver med fasit

Lenke til dette oppgavesettet (kan bokmerkes)

Oppgaver

1

ID: 35644
Formelen

h(t)=130t3+52t2, t[0,50]
gir oss høyden av et tre målt i centimeter t år etter at frøet spirte.

a) Finn høyden av treet om 20 år og 40 år.

b) Finn den deriverte av h

c) Regn ut veksthastigheten om 20 år og om 40 år

2

ID: 83533

Funksjonen f(x)=x25 har tangent i punktet (3,14). Finn likningen til tangenten.

3

ID: 49791

Funksjonen f er gitt ved f(x)=ax2+bx+c. Funksjonens graf skjærer y-aksen i y=4, f(1)=7 og f(1)=0. Finn a, b og c.

4

ID: 35630
Deriver uttrykket:


f(x)=3x22x

5

ID: 83653

Grafen viser den deriverte til en av funksjonene. Hvilken?

f(x)=x2g(x)=xh(x)=x24i(x)=x22

6

ID: 83806

Finn parene funksjoner og dens derivert blant disse

2x3+4x25+3x6x2+8x3

7

ID: 35624
Finn f(x)f(x)f(x) når funksjonen f er gitt ved

f(x)=x2+3x

8

ID: 33555
Finn et uttrykk for den deriverte til f.

f(x)=13x2+25x+1000

9

ID: 34564
Hva er den deriverte for x = 15 for f gitt ved f(x)=0.002x20.4x+100?

10

ID: 83632

Beregn deriverte av f(x)=x22 for x=5 ved først å finne f(x) og deretter beregne f(5).

 

Fasit

1

ID: 35644
Fasit:
a) 7.33 m og 18.67 m
b) h(t)=110t2+5t
c) 60 cm per år og 40 cm per år.

2

ID: 83533
Fasit:

y=6x+4

3

ID: 49791
Fasit:

f(x)=x22x+4

4

ID: 35630
Fasit:
6x-2

5

ID: 83653
Fasit:

i(x)

6

ID: 83806
Fasit:

Den derivertet til 2x3+4x2 er 6x2+8x.Den deriverte til 5+3x er 3.

7

ID: 35624
Fasit:
f(x)=2x+3

8

ID: 33555
Fasit:
f(x)=23x+25

9

ID: 34564
Fasit:
-0.34

10

ID: 83632
Fasit:

5