www.matematikk.org

Gjennomsnitt, median og typetall

For å få oversikt over statistiske data er det nyttig å ha informasjon om blant annet sentralmål i materialet. Gjennomsnitt, median og typetall er noen av verdier som i mange tilfeller kan fortelle oss mye om datamaterialet, selv om vi ikke kan holde oversikt over hvert enkelt tall. Vi har sett på et eksempel om rekrutter. Tenk om det for eksempel var høyden til 3000 rekrutter – eller kanskje et helt årskull – istedenfor 30. Da er det jo svært interessant å vite noe om hvilke verdier som disse høydene fordeler seg omkring, og også litt om hvor spredt verdiene ligger rundt de sentrale verdiene. Dette uten å behøve å gjengi alle de 3000 verdiene.

Gjennomsnitt


Gjennomsnittet, ofte kalt den aritmetiske middelverdien eller bare middelverdien, er summen av alle dataene delt på antall data.

Eksempel


Hva er gjennomsnittshøyden for de 30 rekruttene i eksemplet?
Vi summerer alle de 30 verdiene og får:

177+181+172+185+...+189=5397

Vi har altså 5 397 centimeter å fordele på 30 rekrutter. Gjennomsnittet blir:

539730=179,9  

Gjennomsnittshøyden på rekruttene er altså 179,9 cm, som vi kan runde av til 180 cm.

Median


Medianen finner vi ved å stille opp alle dataene i stigende rekkefølge, og deretter velge ut det tallet som er akkurat i midten. Dersom antallet data er et partall, er det to tall i midten. Da bruker vi gjennomsnittet av disse to tallene.

Eksempel


Vi går igjen tilbake til frekvenstabellen over rekruttenes høyder:

 

Høyde (cm) Frekvens
170 1
171 1
172 2
173 2
174 1
176 1
177 2
179 2
180 3
181 3
182 5
184 1
185 1
187 1
188 1
189 3



Datapunkter nummer 15 og 16 er i midten av datamaterialet, med høydene 180 cm og 181 cm. Gjennomsnittet av de to høydene er 180,5 cm. Med andre ord: Medianhøyden til rekruttene er 180,5 cm.

Typetall


Typetallet er den verdien i et datasett som forekommer flest ganger. Dersom flere data forekommer flest antall ganger (For eksempel på en prøve med tallkarakterer der 10 stykker får 5 og 10 stykker får 4), er typetallet gjennomsnittet av disse dataene, eller vi kan operere med flere typetall for datasettet.

Eksempel 1


Typetallet behøver ikke å være et tall. I eksemplet med eksamenskarakterer er typetallet karakteren C, siden den karakteren forekommer flest ganger.

Eksempel 2


Hva er typetallet i eksemplet med rekrutthøyder?

Den høyden som forekommer flest ganger er 182 cm, hele 5 ganger. Derfor er typetallet 182 cm.

Publisert: 31.03.2008

Skrevet av

Knut Vedeld
Rolf Venheim

Institusjon

Universitetet i Agder
Universitetet i Oslo

Begrep

  • Data

    Opplysninger som vi samler inn kalles data.

  • Gjennomsnitt

    Gjennomsnittet av flere målinger finner du ved å:
    1. summere målingene
    2. dele summen på antall målinger

    Eksempel : Gjennomsnittet av 2, 2, 4, 3 er
    1. 2+2+4+3=11
    2. antall målinger er 4, 11:4=2,75

    Gjennomsnitt kalles også middelverdi.

  • Median

    Medianen finner vi ved å rangere observasjoner etter størrelse og så plukke ut den midterste. Hvis det er to i midten (antall observasjoner er et partall) finner en medianen ved å legge disse to sammen og så dele på 2.

  • Typetall

    Typetallet er det tallet som opptrer flest ganger i f.eks. et innsamlet tallmateriale fra en spørreundersøkelse.