www.matematikk.org

Parallelle vektorer

Hva betyr det at to vektorer er parallelle?

PARALLELLE VEKTORER

To vektorer u og v er parallelle hvis det fins et tall s slik at u=sv.

La u=x1,y1 og v=x2,y2. Vektorene u og v er parallelle ved at

x1,y1=sx2,y2,

det vil si følgende likningssystem er oppfylt

x1=sx2y1=sy2

 

Eksempel 1

Vektorene [1,2] og [3,6] er parallelle siden [3,6]=3[1,2], eventuelt [1,2]=12[3,6].


Eksempel 2

Vektorene [1,2] og [3,5] er derimot ikke parallelle siden likningssystemet

1=3s2=5s

ikke har noen løsning: Den første likningen gir at s=13, og satt inn i likning nummer to gir det 2=53, noe som ikke stemmer.


Eksempel 3

Hva må t være for at vektorene 3u-5v og tu+2v skal være parallelle?

Vi må ha oppfylt

3u-5v=stu+2v 

for en s. Det gir likningene

3u=stu og -5v=s2v

det vil si

3=st og 5=21 

Den andre likningen gir s=52, og dermed gir den første likningen 3=(52)t som gir t=65.

 

 

 

Publisert: 12.08.2013 Endret: 02.07.2015